

Pattern Matching in
Huffman Encoded Texts

Shumel T. Klein and Dana Shapira

Presented by Thorin Tabor

Pattern Matching in Compressed Text

● Pattern matching in compressed text is a specialized
case of the general pattern matching problem of
finding some pattern P in the usually much larger text
T.

● The usual approach to pattern matching in
compressed text is for some encoding algorithm E and
some decoding algorithm D, to first decompress the
text and run a pattern matching on the encoded text
(search for P in D(E(T)).)

● This is not always possible given the amount of space
and time required for decompressing the full text and
then storing the decompressed text.

The Aim of This Paper
● Instead what this paper proposes to do is to

investigate and suggest an algorithm for the
direct pattern matching of the encoded pattern
in the encoded text (searching for E(P) in E(T).)

● This paper assumes that P is encoded the
same way throughout the text. This is
approaches the problem in terms of static
Huffman encoding rather than adaptive
Huffman encoding, Arithmetic encoding, etc.

Why This is Not Trivial
● The problem is not as simple as searching for

all instances of E(P) in E(T), as not every
instance of E(P) will correspond to a match of P
in T.

● This is due to the fact that parts of the match
might cross-character encoding boundaries and
this result in a mismatch.

● The problem is thus one of determining if a
detected possible match is aligned with the
boundaries between encoded characters.

An Example False Match

1 0 0 0 1 0 1 1 0 0

o n e

t w o

{00, 010, 011, 100, 101, 1100,1101,111}Huffman Code:

{T, N, A, O, W, E, B, C}Characters:

T = one E(T) = 1000101100
P = two E(P) = 00101100

One Possible Solution
● A simple solution would be to scan the encoded

text from the beginning, locating all code
boundaries until we come to our match.

● This, however, is a bad solution, as what we
are effectively doing is decoding the entire text
T from the beginning.

● Therefore, instead we need another solution.

Another Possible Solution
● Another possible solution is to prepare a small

list of possible “entry points” into E(T) where we
know the entry point is a code boundary.

● This way if we want to determine if the match is
aligned with code boundaries, we can simply
decompress from the nearest entry point.

● This solution is bad because of the means of
extracting these entry points is much like
decompressing the entire text T.

The Solution Used
● If E(P) has been found at index i, then jump

back some constant number of bits K and start
decoding from there.

● It might be that i – K is not the boundary
between codes, but this solution makes use of
tendency of Huffman codes to resynchronize
quickly after errors. Thus, if K is large enough,
the boundaries ought to be determined by the
time the decoding reaches i.

The Solution Used (Continued)
● Probabilistically, what's happening is that as K

increases, the probability of a mismatch
occurring at i decreases.

● Huffman codes tend to recover from errors
quickly—typically within a 100 bits or so,
therefore having a K of several hundred bits
ought to be sufficient to reduce errors to near
zero.

● Once we reach i, if i is at a code boundary we
have a match. If not, we don't.

A Caveat
● If the particular Huffman code used with this

approach has the affix property—no code is the
prefix or suffix of any other code—then once
synchronization is lost, it will never be regained.

● Thus, unless i – K is the beginning of a code,
the decoding will always be incorrect at i.

● It is of note, though, that affix codes are
extremely rare.

The Proposed Algorithm
Encode P and generate E(P)
while E(T) is not empty

i <-- search(E(P), E(T))
if i = nil stop
node <-- root
for j <-- i – K to i – 1

if jth bit of E(T) = 1
node <-- left (node)

else
node <-- right (node)

if current node is a leaf
node <-- root

if node = root
declare match at address i

delete first i bits in E(T)

encode the pattern to be searched
while there is encoded text left:

search for the next index i
stop if the end is reached
node points to root of tree
jump back K bits and go on

check for the beginnings
and endings of the coding
of characters and once we
have a match then we will
continue back from root to
check for the next match.

if when we get to it, it is edge:
declare a match of P in T

remove that has been searched

Estimating the Number of False
Matches

● To estimate the number of false matches
many different Huffman codes were
generated from natural language-like
texts. Using these codes, many patterns
P and texts T were created, and the
algorithm used.

● Two types of false matches could appear:
false positives and false negatives.

Types of False Matches

● False positives are times when the
algorithm identifies an instance of E(P) in
E(T) that does not correspond to P in T.

● False negatives occur when the algorithm
fails to identify an instance of E(P) in E(T)
that does correspond to P in T.

Experimental Results
K in bits True

Positives
True

Negatives
False

Positives
False

Negatives
8 415 35 2 625
16 670 33 4 370
24 825 36 1 215
32 917 35 2 123
40 974 35 2 66
48 1013 37 0 27
56 1018 36 1 22
64 1036 37 0 4
72 1038 36 1 2
80 1036 36 1 4
88 1039 37 0 1
96 1040 37 0 0
...

Start of file 1040 37 0 0

● The data from this table comes from an experiment run on an
English corpus of text that contained editing instructions.

Experiment Results
● The experiment was run on three corpses:

– An English corpus of editing instructions
– A DNA file of a tobacco genome that contained six

characters
– A corpus derived from the first corpus but with each

character independently and randomly generated
● As can be seen, the accuracy of the algorithm

is a function of K.
● With a K of 96 bits, there was no difference in

accuracy than beginning at the start of the file.

